-
Математика
-
Тригонометрия
-
Синус суммы и разности
\[\sin(\alpha + \beta) = \sin{\alpha} \cos{\beta} + \cos{\alpha} \sin{\beta}\]
\(\sin(\alpha - \beta) = \sin{\alpha} \cos{\beta} - \cos{\alpha} \sin{\beta}\)
\[\cos(\alpha + \beta) = \cos{\alpha} \cos{\beta} - \sin{\alpha} \sin{\beta}\]
\[\cos(\alpha - \beta) = \cos{\alpha} \cos{\beta} + \sin{\alpha} \sin{\beta}\]
\[\mathrm{tg}(\alpha + \beta) = \frac{\mathrm{tg}{\alpha} + \mathrm{tg}{\beta}}{1 - \mathrm{tg}{\alpha} \mathrm{tg}{\beta}}\]
\[\mathrm{tg}(\alpha - \beta) = \frac{\mathrm{tg}{\alpha}- \mathrm{tg}{\beta}}{1 + \mathrm{tg}{\alpha} \mathrm{tg}{\beta}}\]
Докажем сначала тангенс суммы. По определению тангенса:
\[\mathrm{tg}(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}\]
Из формул косинуса и синуса суммы:
\[\frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\sin{\alpha} \cos{\beta} + \cos{\alpha} \sin{\beta}}{\cos{\alpha} \cos{\beta} - \sin{\alpha} \sin{\beta}}\]
\(\cos\alpha \ne 0\) и \(\cos\beta \ne 0\) т.к. при \(\cos\alpha =0\) не определен \(\mathrm{tg}{\alpha}\) (ввиду деления на ноль), аналогично для \(\cos\beta\). Следовательно, можно разделить числитель и знаменатель дроби на \(\cos\alpha \cos\beta\).
\[\frac{\sin{\alpha} \cos{\beta} + \cos{\alpha} \sin{\beta}}{\cos{\alpha} \cos{\beta} - \sin{\alpha} \sin{\beta}} = \frac{\frac{\sin{\alpha} \cos{\beta}}{\cos{\alpha}\cos{\beta}} + \frac{\cos{\alpha} \sin{\beta}}{\cos{\alpha}\cos{\beta}}}{\frac{\cos{\alpha} \cos{\beta}}{\cos{\alpha}\cos{\beta}} - \frac{\sin{\alpha} \sin{\beta}}{\cos{\alpha}\cos{\beta}}} = \frac{\mathrm{tg}{\alpha} + \mathrm{tg}{\beta}}{1 - \mathrm{tg}{\alpha}\mathrm{tg}{\beta} }\]
Доказательство тангенса разности аналогично. По определению тангенса:
\[\mathrm{tg}(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)}\]
Из формул косинуса и синуса суммы:
\[\frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\sin{\alpha} \cos{\beta} - \cos{\alpha} \sin{\beta}}{\cos{\alpha} \cos{\beta} + \sin{\alpha} \sin{\beta}}\]
\(\cos\alpha \ne 0\) и \(\cos\beta \ne 0\) т.к. при \(\cos\alpha =0\) не определен \(\mathrm{tg}{\alpha}\) (ввиду деления на ноль), аналогично для \(\cos\beta\). Следовательно, можно разделить числитель и знаменатель дроби на \(\cos\alpha \cos\beta\).
\[\frac{\sin{\alpha} \cos{\beta} - \cos{\alpha} \sin{\beta}}{\cos{\alpha} \cos{\beta} + \sin{\alpha} \sin{\beta}} = \frac{\frac{\sin{\alpha} \cos{\beta}}{\cos{\alpha}\cos{\beta}} - \frac{\cos{\alpha} \sin{\beta}}{\cos{\alpha}\cos{\beta}}}{\frac{\cos{\alpha} \cos{\beta}}{\cos{\alpha}\cos{\beta}} + \frac{\sin{\alpha} \sin{\beta}}{\cos{\alpha}\cos{\beta}}} = \frac{\mathrm{tg}{\alpha} - \mathrm{tg}{\beta}}{1 + \mathrm{tg}{\alpha}\mathrm{tg}{\beta} }\]
\[\mathrm{ctg}(\alpha + \beta) = \frac{\mathrm{ctg}{\alpha} \mathrm{ctg}{\beta} - 1}{\mathrm{ctg}{\beta} + \mathrm{ctg}{\alpha}}\]
\[\mathrm{ctg}(\alpha - \beta) = \frac{\mathrm{ctg}{\alpha} \mathrm{ctg}{\beta} + 1}{\mathrm{ctg}{\beta} - \mathrm{ctg}{\alpha}}\]
Докажем сначала контангес суммы. По определению контангенса:
\[\mathrm{ctg}(\alpha + \beta) = \frac{\cos(\alpha + \beta)}{\sin(\alpha + \beta)}\]
Из формул косинуса и синуса суммы:
\[\frac{\cos(\alpha + \beta)}{\sin(\alpha + \beta)} = \frac{\cos{\alpha} \cos{\beta} - \sin{\alpha} \sin{\beta}}{\sin{\alpha} \cos{\beta} + \cos{\alpha} \sin{\beta}}\]
\(\sin\alpha \ne 0\) и \(\sin\beta \ne 0\) т.к. при \(\sin\alpha =0\) не определен \(\mathrm{ctg}{\alpha}\) (ввиду деления на ноль), аналогично для \(\sin\beta\). Следовательно, можно разделить числитель и знаменатель дроби на \(\sin\alpha \sin\beta\).
\[\frac{\cos{\alpha} \cos{\beta} - \sin{\alpha} \sin{\beta}}{\sin{\alpha} \cos{\beta} + \cos{\alpha} \sin{\beta}} = \frac{\frac{\cos{\alpha} \cos{\beta}}{\sin{\alpha}\sin{\beta}} - \frac{\sin{\alpha} \sin{\beta}}{\sin{\alpha}\sin{\beta}}}{\frac{\sin{\alpha} \cos{\beta}}{\sin{\alpha}\sin{\beta}} + \frac{\cos{\alpha} \sin{\beta}}{\sin{\alpha}\sin{\beta}}} = \frac{\mathrm{ctg}{\alpha}\mathrm{ctg}{\beta} - 1}{\mathrm{ctg}{\beta} + \mathrm{ctg}{\alpha}}\]
Доказательство контангенса разности аналогично. По определению контангенса:
\[\mathrm{ctg}(\alpha - \beta) = \frac{\cos(\alpha - \beta)}{\sin(\alpha - \beta)}\]
Из формул косинуса и синуса суммы:
\[\frac{\cos(\alpha - \beta)}{\sin(\alpha - \beta)} = \frac{\cos{\alpha} \cos{\beta} + \sin{\alpha} \sin{\beta}}{\sin{\alpha} \cos{\beta} - \cos{\alpha} \sin{\beta}}\]
\(\sin\alpha \ne 0\) и \(\sin\beta \ne 0\) т.к. при \(\sin\alpha =0\) не определен \(\mathrm{ctg}{\alpha}\) (ввиду деления на ноль), аналогично для \(\sin\beta\). Следовательно, можно разделить числитель и знаменатель дроби на \(\sin\alpha \sin\beta\).
\[\frac{\cos{\alpha} \cos{\beta} + \sin{\alpha} \sin{\beta}}{\sin{\alpha} \cos{\beta} - \cos{\alpha} \sin{\beta}} = \frac{\frac{\cos{\alpha} \cos{\beta}}{\sin{\alpha}\sin{\beta}} + \frac{\sin{\alpha} \sin{\beta}}{\sin{\alpha}\sin{\beta}}}{\frac{\sin{\alpha} \cos{\beta}}{\sin{\alpha}\sin{\beta}} - \frac{\cos{\alpha} \sin{\beta}}{\sin{\alpha}\sin{\beta}}} = \frac{\mathrm{ctg}{\alpha}\mathrm{ctg}{\beta} + 1}{\mathrm{ctg}{\beta} - \mathrm{ctg}{\alpha}}\]